EXCEPTIVES UNDER NEGATION: STRENGTHENING THE CASE FOR PEX Andreea Nicolae (ZAS), Aron Hirsch (Maryland), Anamaria Falaus (CNRS)

Introduction

Starting point: but exceptives yield two key inferences (e.g. von

- I solved everything but Problem 4. (1)
 - a. Universal inference I solved everything other than Problem 4 (ϕ_{\forall})
 - b. *Exclusion inference* I didn't solve Problem 4 (ϕ_{excl})

• One view: the exclusion inference is a grammatical implicature

We show: the exclusion inference patterns as a *presupposition*.

Consequence: support that EXH is presuppositional (Bassi et al.

The EXH analysis

Core claim: the two inferences arise from the interaction of *but*

[EXH [_{vP} I solved [_{DP} everything but Problem 4]]] (2)(e.g. Gajewski 2008, 2013, Hirsch 2016, Crnič 2018)

Step 1: but subtracts Problem 4 from the quantifier restrictor to y

a. $\llbracket but \rrbracket = \lambda x \cdot \lambda y \cdot y \neq x$ (3)b. $[vP] = \lambda w \cdot \forall x [x \neq \text{Problem } 4 \rightarrow \text{solve}_w(I, x)] = \phi$

Step 2: EXH asserts *both* the prejacent, and the exclusion inference

- **Defining** EXH (4) $[EXH]^{ALT} = \lambda p_{st} \cdot \lambda w \cdot p(w) \land \forall p' \in ALT [p \not\subseteq p' \rightarrow]$
- For concreteness, we assume that alternatives are computed by: (i) substituting *Problem 4*; (ii) deleting elements within the DP
- (5) **Sample alternative** (6) **Entailment** \neg solve(I, Problem) solve(I, Problem 4)
- The additional alternatives regulate the distribution of *but* (cf.

However: Bassi et al. (2021) take EXH to be a presupposition tri

- **Defining** PEX (7) $[\operatorname{PEX}]^{\operatorname{ALT}} = \lambda p_{st} \cdot \lambda w : \forall p' \in \operatorname{ALT} [p \not\subseteq p' \rightarrow \neg p'(w)]$
- [PEX [_{vP} I solved [_{DP} everything but Problem 4]]] (8) \rightsquigarrow P: ϕ_{excl} A: ϕ_{\forall} (after Baron 2022, Crnič 2022)

Question: is the exclusion inference *asserted* or *presupposed* co

	Comparing EXH a
n Fintel 1993).	Test case: EXH and PEX yield distinct meanings
	• With EXH: negation yields a weak disjunctive n
	(9) LF: NEG > EXH [not [<u>EXH</u> [$_{vP}$ I solved [DP everything H $\rightsquigarrow A: \neg(\phi_{\forall} \land \phi_{excl}) \Leftrightarrow \neg \phi_{\forall} \lor \neg \phi_{excl}$ (equally compatible with denial of eithe
e (EXH).	• With PEX: the universal is negated, while the ex
. 2021).	(10) LF: NEG > PEX [not [<u>PEX</u> [$_{\nu P}$ I solved [DP everything b $\sim P: \phi_{excl}$ A: $\neg \phi_{\forall}$
	(only compatible with denial of ϕ_{\forall})
	Next step: the two inferences do have different st
t and EXH.	Prediction 1: defaul
	Observe: by default, negation most naturally targ
yield ϕ_{\forall} .	 (11) (I heard you solved Problems 1-3, but no No, I DIDN'T solve everything but Problem 3. a. I didn't solve Problem 3 either. b. ??I solved Problem 4 too.
ice.	(12) Continuations
¬p'(w)]	a. (11-a) $\Rightarrow \neg \forall x \ [x \neq Problem 4 \rightarrow sol$ b. (11-b) $\Leftrightarrow solve(I, Problem 4)$
$\mathbf{P} \mathbf{R} \mathbf{V} (\mathbf{i} \mathbf{i})$	• The intuition can further be brought out by com
. Dy (II).	(13) Adverbs
$4) = \phi_{excl}$	a. Unfortunately, I DIDN'T solve every b. ??Fortunately, I DIDN'T solve everyt
Hirsch 2016).	$(\neg \phi_{\forall} = \text{unfortunate}, \neg \phi_{excl} = \text{fortunate})$
rigger.	More support: a question can naturally interroga
	(14) Questions
].p(w)	 a. (<i>I know you didn't solve Problem 4, I</i> Did you solve everything but Proble b. (<i>I know you solved Problems 1-3, bu</i> ??Did you solve everything but Proble
ontent?	Result: the data fit best with ϕ_{\forall} asserted, and ϕ_{exc}

H and PEX

ings under negation. tive meaning.

ning but Problem 4]]]]

either ϕ_{\forall} or ϕ_{excl})

he exclusion inference projects.

ing but Problem 4]]]]

ent status, supporting PEX.

ault pattern

v targets ϕ_{\forall} rather than ϕ_{excl} . but not 4.) Problem 4.

 \rightarrow solve(I, x)] $(\neg \phi_{\forall})$ $(\neg \phi_{excl})$

comparing adverbs.

everything but Problem 4. verything but Problem 4.

rrogate ϕ_{\forall} , but not ϕ_{excl} .

n 4, but I'm hopeful about 1-3.) roblem 4?

, but I'm concerned about 4.) Problem 4?

 ϕ_{excl} presupposed — per PEX.

Prediction: for ϕ_{excl} to be targeted, it must be locally accommodated.

Baseline: quit (15)I didn't QUIT smoking, because I never smoked! (for cases with PEX, see Bassi et al. 2021)

• Local accommodation can in general be signaled by marked stress.

Observe: shifting stress to *but* affects intuitions in the negation data.

- (I heard you solved Problems 1-3, but not 4.) (16)No, I didn't solve everything BUT Problem 4.
 - a. I solved Problem 4 too.
 - b. #I didn't solve Problem 3 either.

Observed inference (17)

a. \Rightarrow solve(I, Problem 4) $(\neg \phi_{excl})$ b. $\Rightarrow \neg \forall x [x \neq \text{Problem 4} \rightarrow \text{solve}(I, x)]$ $(\neg \phi_{\forall})$

• Our take: marked stress on *but* involves local accommodation of ϕ_{excl} .

Step 1: stress signals an \mathcal{A} operator, which converts the presupposition to assertion under negation (Beaver & Krahmer 2001). $\Rightarrow \phi_{excl}$ can be denied in (16).

- $\llbracket \mathscr{A} \rrbracket = \lambda p_{st} \cdot \lambda w \cdot 1 \text{ if } p(w) = 1, 0 \text{ if } p(w) = 0 \text{ or } \#$ (18)
- (19)**LF for (16)**

[not [A [PEX [I solved [DP everything BUT Problem 4]]]]]

 $\rightsquigarrow P: - A: \neg(\phi_{\forall} \land \phi_{excl}) \Leftrightarrow \neg \phi_{\forall} \lor |\neg \phi_{excl}|$

Step 2: a parse with \mathscr{A} is more complex, so it competes with one without \mathscr{A} . $\neg \phi_{\forall}$ can be conveyed without \mathscr{A} (see (10)). $\Rightarrow \phi_{\forall}$ cannot be denied in (16).

Result: with marked stress on *but*, ϕ_{excl} *can* be denied, and ϕ_{\forall} *cannot* be.

Today: evidence that, with a *but* exceptive, the universal inference is *asserted*, but the exclusion inference *presupposed*, supporting: EXH \rightarrow PEX.

• As a marked option, the presupposition can be re-analyzed.

Future: exceptives vary in syntax and semantics (Potsdam 2019, Vostrikova 2021, Mayr & Vostrikova 2022, a.m.o.). How do others behave with negation?

Acknowledgments: We thank Luis Alonso-Ovalle and Bernhard Schwarz for discussion. A.N. receives support from DFG grant NI-1850/2-1 and ERC Synergy Grant 856421 (LeibnizDream). A.F. receives support from CNRS grant LOGICALFUN. Selected references: Baron. The logic of subtractives. - Bassi, Del Pinal, & Sauerland. 2021. Presuppositional exhaustification. - Crnič. 2022. A distributed analysis of only. - Gajewski. 2008. NPI any and connected exceptive phrases. - Gajewski. 2013. An analogy between a connective exceptive phrase and polarity items. - Hirsch. 2016. An unexceptional semantics for expressions of exception. - Vostrikova. 2021. Conditional analysis of clausal exceptives.

Prediction 2: marked stress

Conclusion