

#### **Questions & methods of identification**

The card game. One of the cards below is an Ace of Spades, and the other is an Ace of Hearts. If you guess the Ace of Spades, you get \$10.



Aloni (2001): do you know the answer to the following question?

Which card is the winning card? (1)

It depends on how we identify the cards (by name or by position?):

- Ace of Spades or Ace of Hearts?
- The card on the left or the card on the right?

#### **Conceptual Covers**

Aloni's account of the different meaning of (1) has two ingredients:

- 1. wh-phrases range over sets of individual concepts, i.e.,  $s \rightarrow e$ functions
- 2. these sets must be Conceptual Covers (CCs):

A set of individual concepts U is a Conceptual Cover iff

$$\forall w. \forall x. \exists ! u \in U. \ u_w = x$$

"in each world, each individual is identified by a unique concept in U"

(2)  $[\![(1)]\!]^w = \{ (\lambda w'. u_{w'} = win.card_{w'}) \mid card_w(u_w) \land u \in U \}$ Two CCs that can be the value of U: a. { $(\lambda w'. \text{ ace.sp}), (\lambda w'. \text{ ace.ht})$ } b. { $(\lambda w'. \text{ left.card}_{w'}), (\lambda w'. \text{ right.card}_{w'})$ }

#### This poster

- We argue CCs are **not necessary**: general felicity conditions of questions derive a similar restriction
- Furthermore, they are **empirically inadequate**: domains with overlapping concepts are permitted under certain conditions

# Quantification Uncovered: a Reply to Aloni (2001) Filipe Hisao Kobayashi (UPenn) Enrico Flor (MIT)

 $\Rightarrow$  this you know  $\Rightarrow$  this you don't

## Felicity conditions of questions

Fox (2019), (building on Dayal 1996) proposes that: (we simplify it)

A question Q is felicitous is a context C only if: (3)a. for any  $p \in \llbracket Q \rrbracket$ , only p is true in some  $w \in C$ b. for any  $w \in C$ , some  $p \in \llbracket Q \rrbracket$  is such that only p is true in w

This derives the uniqueness presuppositions of singular *which* questions:

Which card is red?  $\rightsquigarrow$  a unique card is red (4)

Uniqueness follows from the fact that, by (3), the question presupposes:

- a. for any card x, x is the only red card in some  $w \in C$ (5)
  - b. for any  $w \in C$ , some card x is the only red card in w

## **Doing away with Conceptual Covers**

We now advance the following proposal:

- *wh*-phrases can in principle range over **any** set of individual concepts
- restrictions on non-overlapping concepts are due to condition in (3)

*Non-overlap via uniqueness*. Non-overlap among concepts can be imposed by the presupposition of questions:

Which  $\operatorname{card}_{U}$  is the winning card? (6)The Ace of Spades or the card on the left?  $\rightsquigarrow$  the Ace of Spades is not the card on the left

Condition (3) requires the worlds in C to be in one of two sets:

- {  $w \in C \mid \text{ace.sp} = \text{win.card}_w \land \text{right.card}_w \neq \text{win.card}_w$  }
- {  $w \in C \mid \mathsf{right.card}_w = \mathsf{win.card}_w \land \mathsf{ace.sp} \neq \mathsf{win.card}_w$  }
- $\Rightarrow$  this can only hold if the concepts don't overlap!

Blocking too many concepts. Some questions will end up having presuppositions that can't be satisfied (under 'the card game' scenario):

- Which  $\operatorname{card}_{U}$  is the winning card? #The Ace of Spades, The Ace of Hearts, the card on the left or the one on the right?
- $\Rightarrow$  since there are four concepts but two cards, it's impossible for only one of these concepts to return the winning card!

## When overlapping concepts are allowed

#### **Case #1**: Uncertainty about identity

Ann's disguises. In the morning, you meet with a woman with a hat, a woman with a scarf and a woman with gloves. Later, I tell you that you met Ann more than once — she was disguised. You can ask:

- Which<sub>U</sub> people I met with were Ann? (8)
- partitioned into the following (non-empty) sets:

 $\{ w \in C \mid \mathsf{wm.hat}_w \}$  $w \in C \mid \mathsf{wm.scarf}_u$ 

 $w \in C \mid \mathsf{wm.hat}_w$ 

**Case** #2: Intensional operators within the question

- (9)
  - b. Who does Ann dreams of meeting?
- the domain of wh is not a CC).
- doesn't lead to non-overlap inferences:
- (10)

 $\Rightarrow$  though the concepts are co-extensional, the above is consistent!

Acknowledgments We are grateful to comments and suggestions by Danny Fox and our SALT reviewers. All mistakes are our own. **References**. [1] Aloni (2001) Quantification under Conceptual Covers [2]. Fox (2019) "Partition by exhaustification: Comments on Dayal (1996)" [3] Dayal "Locality in WH Quantification: Questions and Relative Clauses in Hindi".

where  $U = \{(\lambda w. wm.hat_w), (\lambda w. wm.scarf_w), (\lambda w. wm.gloves_w)\}$ 

• ALONI (2001): The question should be unacceptable (U is not a CC). • OUR PROPOSAL: Acceptable as long as the worlds in C are

$$= \operatorname{ann} \neq \operatorname{wm.scarf}_w \neq \operatorname{wm.gloves}_w \}$$

$$= \operatorname{ann} \neq \operatorname{wm.hat}_w \neq \operatorname{wm.gloves}_w \}$$

$$= \operatorname{wm.scarf}_w = \operatorname{ann} \neq \operatorname{wm.gloves}_w \}$$

$$\vdots$$

a. Which card wins the game according to the rules? The Ace of Spades or the card on the left? The current president of the US or Obama's vice president?

• ALONI (2001): The questions should be unacceptable (in both cases,

• OUR PROPOSAL: Exhaustification of answers, in these examples,

Ann dreams of meeting the current president of the US but she doesn't dream of meeting Obama's vice president.