Alternative Comparison

in Underspecified Degree Operators

Ang Li
05-13-2023 Yale University

Today I will
\triangleright Revisit the recurrent ambiguities between
Comparison, Additivity, and Continuation
\triangleright Demonstrate an analysis based on a comparative meaning that compares structurally derived alternatives

Today I will
\triangleright Revisit the recurrent ambiguities between
Comparison, Additivity, and Continuation
\triangleright Demonstrate an analysis based on a comparative meaning that compares structurally derived alternatives

Cross linguistic ambiguities

The amount comparative in English, more, has an additive reading:
(I) John bought three apples. ... Mary bought more (apples).
a. $\leadsto>$ Mary bought more than three apples. (comparative reading)
b. $\rightsquigarrow>$ Mary bought apples, in addition to what John bought.

In German, this additive meaning can be expressed by noch, which also has a different, continuative reading:
(2) Otto had noch einen Schnapps getrunken.

Otto had noch one Schnapps drunk
"Otto had another Schnapps."
(3) Es regnet noch.

It raining noch
"It is still raining."

Romanian mai has a three-way ambiguitiy:
(4) Ion e mai intelligent decat Petre. John is mai intelligent than Petre.
"John is more intelligent than Petre."
(comparative reading)
(5) Ion va mai citi un roman.

John AUX mai read a novel
"John will read another nove."
(additive reading)
(6) Ion mai merge la biblioteca.

John mai goes at library.
"John still goes to the library."

Empirical landscape (Thomas 2018):
\triangleright Ambiguitities between comparison, additivity, and continuation are attested in a diverse set of languages.
\triangleright None of these languages allows for ambiguity between comparison and continuation to the exclusion of additivity.

	comparison	additivity	continuation
\checkmark (Vietnamese)	A	B	C
\checkmark (English, French)	A		
\checkmark (German, Hungarian)	A	B	
$*$ (unattested)	A	B	A
\checkmark (Romanian)	A		

Brief review of the literature

For the majority of the linguistic literature, comparative constructions express a relation between two degrees:

John's maximal degree of tallness exceeds 5 ' 8 " (i.e. Mary's height)

Implication on incomplete comparatives?
A fair hypothesis is the overt standard is replaced by a degree pro-form:

John's maximal degree of tallness exceeds g_{I}

\triangleright additive more can be captured as a derived measure function of events: (cf. Greenberg 2010, Thomas 20Io)
(7) \llbracket more $\rrbracket^{\mathrm{I}}:=$

$$
\begin{aligned}
& \lambda d \lambda Q \lambda P \lambda e . \exists x:[Q x \wedge P(x, e) \wedge \mu(h(e))=d] \wedge \\
& \partial\left(\exists e^{\prime}, P^{\prime}, d^{\prime}, y:\left[Q y \wedge P^{\prime}\left(y, e^{\prime}\right) \wedge \mu\left(b\left(e^{\prime}\right)\right)=d\right]\right) \wedge \\
& \exists e^{\prime \prime} \exists P^{\prime \prime} \exists z:\left[Q z \wedge P^{\prime \prime}\left(z, e^{\prime \prime}\right) \wedge z=x+y \wedge \mu\left(h\left(e^{\prime \prime}\right)\right)=d+d^{\prime}\right]
\end{aligned}
$$

(8) 【John bought two more apples】 \rightsquigarrow
\triangleright continuative operators like still are typically associated with a scale determined by its containing context:
(9) \llbracket noch $/$ still $\rrbracket:=\lambda S \lambda x^{\prime} \lambda x \lambda P . \partial\left(x^{\prime} \prec_{S} x \wedge P x^{\prime}\right) \wedge P x$

[^0]The issue:
wildly different lexical entries (but see Feldscher 2017 ${ }^{2}$, hard to see how to establish any logical connection between the three meanings and explain the recurrent ambiguities.

[^1]Previous proposal（Thomas 2010）：a re－analysis of the comparative couched in scale segment semantics（cf．Schwarzschild 2013）
\triangleright A scale segment is an abstract entity，which provides a structured representation for degree－related meanings：
（го）A scale segment σ is a quadruple $\left\langle u, v,>_{\sigma}, \mu_{\sigma}\right\rangle$
（土i）【Mary is taller than John 』：＝

$$
\exists \sigma \cdot \operatorname{START}\left(\sigma, \mu_{\sigma} \mathrm{j}\right) \wedge \nearrow \nearrow \quad \sigma \wedge \mu_{\sigma}=\operatorname{HT} \wedge \operatorname{END}\left(\sigma, \mu_{\sigma} \mathrm{m}\right)
$$

\triangleright We＇ll circle back to this proposal．
\triangleright It＇s still worthwhile to consider an apporach that does without scale segments．

Alternative comparisons

Li (2021): Comparatives compare two things of the same type (i.e. two alternatives) on a locally derived measurement dimension
(cf. Heim 1985, Bhatt \& Takahashi 2007)

Li (2021): Comparatives compare two things of the same type (i.e. two alternatives) on a locally derived measurement dimension
(cf. Heim 1985, Bhatt \& Takahashi 2007)

Li (2021): Comparatives compare two things of the same type (i.e. two alternatives) on a locally derived measurement dimension
(cf. Heim 1985, Bhatt \& Takahashi 2007)

er may be licensed by any scope-takers in the sentence, generating a comparison about the variables they bind:
(I2) Mary ${ }^{y}$ is $6 \mathrm{ft}^{d^{\prime}}$ tall. ... Today I finally met a taller ${ }_{d^{\prime}, y}$ woman. $\rightsquigarrow>$ $\left[\mathrm{a}\left[\mathrm{er}_{d^{\prime}, y} \lambda x \lambda d[x[d\right.\right.$-tall woman $\left.]]\right]$
(I3) John criticized ${ }^{P}$ five $^{d^{\prime}}$ books. ... He PRAISED $\operatorname{more}_{d^{\prime}, P} . \rightsquigarrow$ [PRAISED $\left[\operatorname{er}_{d^{\prime}, P} \lambda P \lambda d[d\right.$-many books $\left.\lambda z[\operatorname{He} P z]]\right]$
predicate
(14) This boat is $20 \mathrm{ft}^{d^{\prime}}$ long. ... I thought it was longer ${ }_{d^{\prime}, w @} . \rightsquigarrow$ [I thought ${ }_{w \varrho}\left[\operatorname{er}_{d^{\prime}, w_{\varrho}} \lambda w \lambda d\left[\right.\right.$ it was $_{w} d$-long $\left.]\right] \quad$ intensional Op
(I5) John ${ }^{y}$ criticized P five $^{d^{\prime}}$ books. ... Mary PRAISED more ${ }_{d^{\prime}, P, y} . \rightsquigarrow$ [Mary [PRAISED $\left[\operatorname{er}_{d^{\prime}, P, y} \lambda P \lambda x \lambda d\left[d\right.\right.$-many books $\left.\left.\lambda z\left[\begin{array}{lll}x & P & z\end{array}\right]\right]\right]$

[^2]Only restriction for possible comparisons: the standard degree must be the measurement of the standard alternative on the locally derived dimension.

Proposal for CAC ambiguities: we can compositionally derive the meaning of additive/continuative meaning from the comparative, because both meanings can be cashed out using alternative comparisons.

Deriving additivity by summing up the alternatives:

(Mary bought three apples. ...) John bought more apples. $\leadsto>$ John bought more apples than Mary.

Deriving additivity by summing up the alternatives:

(Mary bought three apples. ...) John bought more apples. \rightsquigarrow John and Mary bought more apples than Mary alone.

Deriving continuation as a presupposed additive comparison:

$$
\operatorname{impf}(\text { rain })(\text { pres }) \wedge \partial\left(\mathrm{ADD}_{t^{\prime}}\left(\mathrm{er}_{n^{\prime}, t^{\prime}}(\lambda n \lambda t . \operatorname{impf}(\text { rain }) t \wedge n \leq \operatorname{impf(\text {rain})} t)\right)(\text { pres })\right)
$$

${ }^{4} n \leq_{f} u:=f u \not \models_{c} f n$; for any two propositions $p, q, p \models_{c} q$ iff $\forall w \in c: p w \rightarrow q w$.
$\operatorname{ADD}_{t^{\prime}}\left(\operatorname{er}_{n^{\prime}, t^{\prime}}\left(\lambda n \lambda t \cdot \operatorname{impf}(\right.\right.$ rain $\left.\left.) t \wedge n \leq \leq_{\text {impf(rain })} t\right)\right)(\text { pres })^{4}$
$=\partial\left(n^{\prime}=\max \left\{n \mid \operatorname{impf}(\right.\right.$ rain $\left.\left.) t^{\prime} \wedge n \leq_{\operatorname{impf}(\text { rain })} t^{\prime}\right\}\right) \wedge$ $\max \left\{n \mid \operatorname{impf}(\right.$ rain $\left.)\left(\operatorname{pres} \oplus t^{\prime}\right) \wedge n \leq_{\operatorname{impf(rain})}\left(\operatorname{pres} \oplus t^{\prime}\right)\right\}>n^{\prime}$
$=\partial\left(n^{\prime}=\max \left\{n \mid \exists e\right.\right.$: raine $\wedge t^{\prime} \subseteq \tau(e) \wedge n$ is a subinterval of $\left.\left.t^{\prime}\right\}\right) \wedge \max$ $\left\{n \mid \exists e:\right.$ raine $\wedge\left(\right.$ pres $\left.\oplus t^{\prime}\right) \subseteq \tau(e) \wedge n$ is a subinterval of $\left(\right.$ pres $\left.\left.\oplus t^{\prime}\right)\right\}>n^{\prime}$

$$
{ }^{4} n \leq_{f} u:=f u \models_{c} f n \text {; for any two propositions } p, q, p \models_{c} q \text { iff } \forall w \in c: p w \rightarrow q w .
$$

$\operatorname{ADD}_{t^{\prime}}\left(\operatorname{er}_{n^{\prime}, t^{\prime}}\left(\lambda_{n} \lambda t \cdot \operatorname{impf}(\right.\right.$ rain $\left.\left.) t \wedge \sum_{\text {impf(rain) }} t\right)\right)(\text { pres })^{4}$
$=\partial\left(n^{\prime}=\max \left\{n \mid \operatorname{impf}(\right.\right.$ rain $\left.\left.) t^{\prime} \wedge n \leq_{\operatorname{impf}(\text { rain })} t^{\prime}\right\}\right) \wedge$ $\max \left\{n \mid \operatorname{impf}(\right.$ rain $\left.)\left(\operatorname{pres} \oplus t^{\prime}\right) \wedge n \leq_{\operatorname{impf(rain})}\left(\operatorname{pres} \oplus t^{\prime}\right)\right\}>n^{\prime}$
$=\partial\left(n^{\prime}=\max \left\{n \mid \exists e\right.\right.$: raine $\wedge t^{\prime} \subseteq \tau(e) \wedge n$ is a subinterval of $\left.\left.t^{\prime}\right\}\right) \wedge \max$ $\left\{n \mid \exists e:\right.$ raine $\wedge\left(\right.$ pres $\left.\oplus t^{\prime}\right) \subseteq \tau(e) \wedge n$ is a subinterval of $\left(\right.$ pres $\left.\left.\oplus t^{\prime}\right)\right\}>n^{\prime}$
$=\partial\left(\exists e:\right.$ raine $\left.\wedge t^{\prime} \subseteq \tau(e) \wedge n^{\prime}=t^{\prime}\right) \wedge \exists e:$ raine $\wedge\left(\right.$ pres $\left.\oplus t^{\prime}\right) \subseteq$
$\tau(e) \wedge \max \left\{n \mid n\right.$ is a subinterval of $\left(\right.$ pres $\left.\left.\oplus t^{\prime}\right)\right\}>n^{\prime}$

$$
{ }^{4} n \leq_{f} u:=f u \models_{c} f n ; \text { for any two propositions } p, q, p \models_{c} q \text { iff } \forall w \in c: p w \rightarrow q w
$$

$\operatorname{ADD}_{t^{\prime}}\left(\operatorname{er}_{n^{\prime}, t^{\prime}}\left(\lambda_{n} \lambda t \cdot \operatorname{impf}(\right.\right.$ rain $\left.\left.) t \wedge \leqslant_{\text {impf(rain })} t\right)\right)(\text { pres })^{4}$
$=\partial\left(n^{\prime}=\max \left\{n \mid \operatorname{impf}(\right.\right.$ rain $\left.\left.) t^{\prime} \wedge n \leq_{\operatorname{impf}(\text { rain })} t^{\prime}\right\}\right) \wedge$
$\max \left\{n \mid \operatorname{impf}(\right.$ rain $\left.)\left(\operatorname{pres} \oplus t^{\prime}\right) \wedge n \leq_{\operatorname{impf(rain})}\left(\operatorname{pres} \oplus t^{\prime}\right)\right\}>n^{\prime}$
$=\partial\left(n^{\prime}=\max \left\{n \mid \exists e\right.\right.$: raine $\wedge t^{\prime} \subseteq \tau(e) \wedge n$ is a subinterval of $\left.\left.t^{\prime}\right\}\right) \wedge \max$ $\left\{n \mid \exists e:\right.$ raine $\wedge\left(\right.$ pres $\left.\oplus t^{\prime}\right) \subseteq \tau(e) \wedge n$ is a subinterval of $\left(\right.$ pres $\left.\left.\oplus t^{\prime}\right)\right\}>n^{\prime}$
$=\partial\left(\exists e:\right.$ raine $\left.\wedge t^{\prime} \subseteq \tau(e) \wedge n^{\prime}=t^{\prime}\right) \wedge \exists e:$ raine $\wedge\left(\right.$ pres $\left.\oplus t^{\prime}\right) \subseteq$
$\tau(e) \wedge \max \left\{n \mid n\right.$ is a subinterval of $\left(\right.$ pres $\left.\left.\oplus t^{\prime}\right)\right\}>n^{\prime}$
$=\partial\left(\exists e:\right.$ raine $\left.\wedge t^{\prime} \subseteq \tau(e)\right) \wedge$
$\exists e:$ raine $\wedge\left(\right.$ pres $\left.\oplus t^{\prime}\right) \subseteq \tau(e) \wedge\left(\right.$ pres $\left.\oplus t^{\prime}\right)>t^{\prime}$

$$
{ }^{4} n \leq_{f} u:=f u \models_{c} f n ; \text { for any two propositions } p, q, p \models_{c} q \text { iff } \forall w \in c: p w \rightarrow q w
$$

$\operatorname{ADD}_{t^{\prime}}\left(\operatorname{er}_{n^{\prime}, t^{\prime}}\left(\lambda_{n} \lambda t \cdot \operatorname{impf}(\right.\right.$ rain $\left.\left.) t \wedge n \ll_{\operatorname{impf}(\text { rain })} t\right)\right)(\text { pres })^{4}$
$=\partial\left(n^{\prime}=\max \left\{n \mid \operatorname{impf}(\right.\right.$ rain $\left.\left.) t^{\prime} \wedge n \leq_{\operatorname{impf(rain})} t^{\prime}\right\}\right) \wedge$
$\max \left\{n \mid \operatorname{impf}(\right.$ rain $\left.)\left(\operatorname{pres} \oplus t^{\prime}\right) \wedge n \leq_{\operatorname{impf(rain})}\left(\operatorname{pres} \oplus t^{\prime}\right)\right\}>n^{\prime}$
$=\partial\left(n^{\prime}=\max \left\{n \mid \exists e\right.\right.$: raine $\wedge t^{\prime} \subseteq \tau(e) \wedge n$ is a subinterval of $\left.\left.t^{\prime}\right\}\right) \wedge \max$ $\left\{n \mid \exists e:\right.$ raine $\wedge\left(\right.$ pres $\left.\oplus t^{\prime}\right) \subseteq \tau(e) \wedge n$ is a subinterval of $\left(\right.$ pres $\left.\left.\oplus t^{\prime}\right)\right\}>n^{\prime}$
$=\partial\left(\exists e:\right.$ raine $\left.\wedge t^{\prime} \subseteq \tau(e) \wedge n^{\prime}=t^{\prime}\right) \wedge \exists e:$ raine $\wedge\left(\right.$ pres $\left.\oplus t^{\prime}\right) \subseteq$
$\tau(e) \wedge \max \left\{n \mid n\right.$ is a subinterval of $\left(\right.$ pres $\left.\left.\oplus t^{\prime}\right)\right\}>n^{\prime}$
$=\partial\left(\exists e:\right.$ raine $\left.\wedge t^{\prime} \subseteq \tau(e)\right) \wedge$
$\exists e:$ raine $\wedge\left(\right.$ pres $\left.\oplus t^{\prime}\right) \subseteq \tau(e) \wedge\left(\right.$ pres $\left.\oplus t^{\prime}\right)>t^{\prime}$
$=\partial\left(\exists e:\right.$ raine $\left.\wedge t^{\prime} \subseteq \tau(e)\right) \wedge \exists e:$ raine $\wedge\left(\operatorname{pres} \oplus t^{\prime}\right) \subseteq \tau(e) \wedge t^{\prime} \prec$ pres

$$
{ }^{4} n \leq_{f} u:=f u \models_{c} f n ; \text { for any two propositions } p, q, p \models_{c} q \text { iff } \forall w \in c: p w \rightarrow q w
$$

$\operatorname{ADD}_{t^{\prime}}\left(\mathrm{er}_{n^{\prime}, t^{\prime}}\left(\lambda n \lambda t . \operatorname{impf}(\right.\right.$ rain $\left.\left.) t \wedge n \leq_{\text {impf(rain })} t\right)\right)(\text { pres })^{4}$
$=\partial\left(n^{\prime}=\max \left\{n \mid \operatorname{impf}(\right.\right.$ rain $\left.\left.) t^{\prime} \wedge n \leq_{\operatorname{impf(rain})} t^{\prime}\right\}\right) \wedge$
$\max \left\{n \mid \operatorname{impf}(\right.$ rain $\left.)\left(\operatorname{pres} \oplus t^{\prime}\right) \wedge n \leq_{\operatorname{impf}(\text { rain })}\left(\operatorname{pres} \oplus t^{\prime}\right)\right\}>n^{\prime}$
$=\partial\left(n^{\prime}=\max \left\{n \mid \exists e\right.\right.$: raine $\wedge t^{\prime} \subseteq \tau(e) \wedge n$ is a subinterval of $\left.\left.t^{\prime}\right\}\right) \wedge$ max $n^{\prime}=t^{\prime}$ $\left\{n \mid \exists e:\right.$ raine $\wedge\left(\right.$ pres $\left.\oplus t^{\prime}\right) \subseteq \tau(e) \wedge n$ is a subinterval of $\left(\right.$ pres $\left.\left.\oplus t^{\prime}\right)\right\}>n^{\prime}$
$=\partial\left(\exists e:\right.$ raine $\left.\wedge t^{\prime} \subseteq \tau(e) \wedge n^{\prime}=t^{\prime}\right) \wedge \exists e:$ raine $\wedge\left(\right.$ pres $\left.\oplus t^{\prime}\right) \subseteq$
$\tau(e) \wedge \max \left\{n \mid n\right.$ is a subinterval of $\left(\right.$ pres $\left.\left.\oplus t^{\prime}\right)\right\}>n^{\prime}$
$=\partial\left(\exists e:\right.$ raine $\left.\wedge t^{\prime} \subseteq \tau(e)\right) \wedge$
$\exists e:$ raine $\wedge\left(\right.$ pres $\left.\oplus t^{\prime}\right) \subseteq \tau(e) \wedge\left(\right.$ pres $\left.\oplus t^{\prime}\right)>t^{\prime}$
$=\partial\left(\exists e:\right.$ raine $\left.\wedge t^{\prime} \subseteq \tau(e)\right) \wedge \exists e:$ raine $\wedge\left(\operatorname{pres} \oplus t^{\prime}\right) \subseteq \tau(e) \wedge t^{\prime} \prec$ pres

$$
{ }^{4} n \leq_{f} u:=f u \models_{c} f n ; \text { for any two propositions } p, q, p \models_{c} q \text { iff } \forall w \in c: p w \rightarrow q w
$$

$\operatorname{impf}($ rain $)($ pres $) \wedge \partial\left(\operatorname{ADD}_{t^{\prime}}\left(\operatorname{er}_{n^{\prime}, t^{\prime}}\left(\lambda n \lambda t . \operatorname{impf}(\right.\right.\right.$ rain $) t \wedge n \leq_{\text {impf(rain }}$
$t)($ pres $)$)
$\operatorname{impf}($ rain $)($ pres $) \wedge \partial\left(\operatorname{ADD}_{t^{\prime}}\left(\operatorname{er}_{n^{\prime}, t^{\prime}}\left(\lambda n \lambda t \cdot \operatorname{impf}(\right.\right.\right.$ rain $\left.) t \wedge n \leq_{\text {impf(rain }}\right)$
$t)($ pres $)$)
$=\exists e:$ raine \wedge pres $\subseteq \tau(e) \wedge$
$\partial\left(\partial\left(\exists e:\right.\right.$ raine $\left.\wedge t^{\prime} \subseteq \tau(e)\right) \wedge \exists e:$ raine $\wedge\left(\operatorname{pres} \oplus t^{\prime}\right) \subseteq \tau(e) \wedge t^{\prime} \prec$ pres $)$
$\operatorname{impf}($ rain $)(\operatorname{pres}) \wedge \partial\left(\operatorname{ADD}_{t^{\prime}}\left(\mathrm{er}_{n^{\prime}, t^{\prime}}\left(\lambda n \lambda t \cdot \operatorname{impf}(\right.\right.\right.$ rain $) t \wedge n \leq_{\text {impf(rain })}$
$t)$ (pres))
$=\exists e:$ raine \wedge pres $\subseteq \tau(e) \wedge$
$\partial\left(\partial\left(\exists e:\right.\right.$ raine $\left.\wedge t^{\prime} \subseteq \tau(e)\right) \wedge \exists e:$ raine $\wedge\left(\operatorname{pres} \oplus t^{\prime}\right) \subseteq \tau(e) \wedge t^{\prime} \prec$ pres $)$
\triangleright Assertion: it is raining now.
\triangleright Presupposition: the raining has continued from an earlier time t^{\prime}.
\triangleright Implicature: the speaker can't assert that the rain will continue to a time later than now.

Deriving the typology

Distributed Morphology (Halle \& Marantz 1993):
\triangleright The terminals of syntactic structures are morphemes: sets of features without phonological content.
\triangleright Subset Principle: a morpheme, i.e. a set of features, is spelt out by the lexical item that matches its greatest subset of features (Halle 2000).

CAC operators (e.g. more, noch, still)
are phonological realizations of a deg head (cf. Thomas 2018).

Distributed Morphology (Halle \& Marantz 1993):
\triangleright The terminals of syntactic structures are morphemes: sets of features without phonological content.
\triangleright Subset Principle: a morpheme, i.e. a set of features, is spelt out by the lexical item that matches its greatest subset of features (Halle 2000).

CAC operators (e.g. more, noch, still) are phonological realizations of a deg head (cf. Thomas 2018).

(a) comparison
(b) additivity
(c) continuation

Distributed Morphology (Halle \& Marantz 1993):
\triangleright The terminals of syntactic structures are morphemes: sets of features without phonological content.
\triangleright Subset Principle: a morpheme, i.e. a set of features, is spelt out by the lexical item that matches its greatest subset of features (Halle 2000).

CAC operators (e.g. more, noch, still)
are phonological realizations of a deg head (cf. Thomas 2018).

(a) comparison
(b) additivity
(c) continuation

Generating the typological distribution:

Comp./Add. I Cont.	English: $\{\mathrm{er}\} \leftrightarrow$ er, $\{\mathrm{er}, \mathrm{CONT}, \mathrm{ADD}\} \leftrightarrow$ still
Comp. I Add./Cont.	German: $\{\mathrm{er}\} \leftrightarrow$ mehr, $\{\mathrm{er}, \mathrm{ADD}\} \leftrightarrow$ noch
Comp. /Add. /Cont.	Romanian: $\{\mathrm{er}\} \leftrightarrow$ mai
Comp. I Add. I Cont.	Vietnamese: $\{\mathrm{er}\} \leftrightarrow$ hon, $\{$ er, ADD $\} \leftrightarrow$ nūa, $\{$ er, CONT, ADD $\} \leftrightarrow$ van

Explaining the implicational universal:
$\triangleright \alpha$ is the phonological realization of both $\{\mathrm{er}\}$ and $\{\mathrm{er}, \mathrm{CONT}, \mathrm{ADD}\}$
$\rightarrow \alpha$ is the item matching the biggest subset of $\{\mathrm{er}, \mathrm{ADD}\}$
\triangleright i.e. Comparison/Continuation \rightarrow Comparison/Additivity/Continuation

Comparing to scale segments

In scale segment semantics:
\triangleright Instead of denoting a relation between degrees and individuals, adjectives denote a predicate of scale segments.

$$
\text { (土6) } \llbracket \text { tall } \rrbracket:=\lambda \sigma \cdot \mu_{\sigma}=\text { HEIGHT }
$$

\triangleright Components of the comparison (i.e. the target and the standard of the comparison, the differential) are treated as modifiers of the scale segment.

(17) 【Mary is two inches taller than John】 $:=\exists \sigma \cdot \operatorname{START}\left(\sigma, \mu_{\sigma \mathfrak{j}}\right) \wedge \nearrow \sigma \wedge \mu_{\sigma}=\mathrm{HT} \wedge$ $\Delta \sigma=2 \mathrm{in} \wedge \operatorname{END}\left(\sigma, \mu_{\sigma} \mathrm{m}\right)$
\rightsquigarrow There is a rising scale segment of height that starts from John's measurement and ends at Mary's measurement and the difference value is two inches.

(i8) 【John bought more apples】
$\operatorname{END}\left(\sigma, \mu_{\sigma}(\oplus(\{x \mid\right.$ apples $x \wedge$ john bought $\left.x\}))\right)$
\leadsto There is a rising scale segment of quantity that starts from the measurement of the apples John bought and ends at the measurement of some antecedent apples.

(19) ADD := $\lambda \Sigma \lambda \Sigma^{\prime} \lambda x \lambda \sigma . \Sigma(\sigma)\left(g_{\mathrm{r}}\right) \wedge \Sigma^{\prime}(\sigma)\left(x \oplus g_{\mathrm{r}}\right)$

(20) 【John bought more apples】 (additive reading) $:=\exists \sigma . \nearrow \sigma \wedge \mu_{\sigma}=\operatorname{COUNT} \wedge \operatorname{START}\left(\sigma, \mu_{\sigma}\left(g_{\mathrm{t}}\right)\right) \wedge$ $\operatorname{END}\left(\sigma, \mu_{\sigma}(\oplus(\{x \mid\right.$ apples $x \wedge$ john bought $\left.x\})) \oplus g_{\mathrm{I}}\right)$
\leadsto There is a rising scale segment of quantity that starts from the measurement of some antecedent apples and ends with the measurement of the antecedent apples and the apples John bought.
(2I) \llbracket it is still raining $\rrbracket:=$ $\exists e . \operatorname{rain}(e) \wedge t_{e} \subseteq \tau(e) \wedge$
$\partial\left(\exists \sigma \exists \epsilon \exists t^{\prime}\left[\operatorname{rain}(\epsilon) \wedge t^{\prime} \subseteq \tau(\epsilon) \wedge \neg \operatorname{INIT}(e, \epsilon) \wedge \mu_{\sigma}=\right.\right.$ $\operatorname{STAGE}_{\epsilon} \wedge \nearrow \sigma \wedge \mu_{\sigma}=\operatorname{COUNT} \wedge \operatorname{StaRT}\left(\sigma, \mu_{\sigma}\left(g_{\mathrm{I}}\right)\right)$ $\left.\wedge \operatorname{END}\left(\sigma, \mu_{\sigma}\left(e \oplus g_{\mathrm{t}}\right)\right]\right)$
\triangleright Assertion: now is within the duration of a raining event.
\triangleright Presupposition: there is a rising scale segment of event development that starts from the measurement of some antecedent event and ends with the sum of this antecedent event and the current event.
(22) $\quad \mathrm{CON}:=$

$\lambda \Sigma \lambda R \lambda e \lambda t . R(e)(t) \wedge \partial\left(\exists \sigma \exists \epsilon \exists t^{\prime}\left[R(\epsilon)\left(t^{\prime}\right) \wedge \neg \operatorname{INIT}(e, \epsilon) \wedge\right.\right.$

 $\left.\left.\mu_{\sigma}=\operatorname{STAGE}_{\epsilon} \wedge \Sigma(e)(\sigma)\right]\right)$

Similarities with my proposal:
\triangleright The comparison meaning is captured as a comparison between two correlates.
\triangleright The logical connection between CAC meanings is derived by incrementally adding covert operators manipulating the correlates and the measurement dimension.

Difference: whether or not the measurement dimension is structurally derived.

Difference in prediction I : infelicitous anaphoricity in amount comparatives.

Context: Mary bought three apples. 【John bought more apples】 :=
(23) $\exists \sigma \cdot \nearrow \sigma \wedge \mu_{\sigma}=\operatorname{COUNT} \wedge \operatorname{START}\left(\sigma, \mu_{\sigma}\left(g_{\mathrm{I}}\right)\right) \wedge \mathrm{END}$ $\left(\sigma, \mu_{\sigma}(\oplus(\{x \mid\right.$ apples $x \wedge$ john bought $\left.x\})) \oplus g_{\mathrm{r}}\right) \quad$ (Thomas 2018) \leadsto comparing the first-mentioned three apples \oplus the apples John bought and the three apples.
(24) $\partial\left(d^{\prime}=\max \left\{d \mid g_{\mathrm{I}}\right.\right.$ bought d-many apples $\left.\}\right) \wedge$ $\max \left\{d \mid\right.$ john $\oplus g_{\mathrm{I}}$ bought d-many apples $\}>d^{\prime} \quad$ (my proposal) \leadsto comparing Mary \oplus John and Mary in the apples they bought, presupposing the first mentioned quantity three is the number of apples Mary bought.

Only (24) makes the correct prediction in a context with added negation:
(25) Mary didn't buy those three apples. ?? John bought more apples.
\triangleright More in (25) doesn't have an additive (or comparative) reading.
$\triangleright(23)$ still generates the same felicitous meaning.
$\triangleright(24)$ doesn't: the presupposition can't be satisfied in this context!

Difference in prediction 2: varieties of the continuative reading
(26) Anthea is still tall.
a. $\leadsto \rightarrow$ Anthea was tall at some earlier time. (temporal reading)
b. $\leadsto \rightarrow$ Anthea is only marginally tall.
(marginal reading)
\triangleright Continuative operators like still across languages are systematically ambiguous between a variety of flavors.
\triangleright The scale segment approach in Thomas (2018): unclear how to derive these different flavors of non-temporal continuation, as the measurement dimension (event development) is hard-wired into the meaning of CON.
\triangleright My proposal can derive the marginal reading of (26): change the scale of the presupposed comparison by changing the scope property of CONT.
$\operatorname{POS}($ tall $)($ anthea) \wedge
$\partial\left(\operatorname{ADD}_{y}\left(\operatorname{er}_{n^{\prime}, y}\left(\lambda n \lambda x \cdot \operatorname{POS}(\right.\right.\right.$ tall $\left.\left.) x \wedge n \leq_{\operatorname{Pos}(\text { tall })} x\right)\right)($ anthea $\left.)\right)$
anthea

(27) $\operatorname{POS}($ tall $)($ anthea $) \wedge \partial\left(\operatorname{ADD}_{y}\left(\operatorname{er}_{n^{\prime}, y}\left(\lambda_{n} \lambda x \cdot \operatorname{POS}(\right.\right.\right.$ tall $) x \wedge n \leq_{\operatorname{POS}(\text { tall })}$ $x)$)(anthea))
$\rightsquigarrow \exists d$: standard $d \wedge \operatorname{tall}(d$, anthea $) \wedge$
$\partial\left(\max \left\{n \mid \operatorname{POS}(\right.\right.$ tall $\left.)(\mathrm{a} \oplus y) \wedge n \leq_{\operatorname{pos}(\text { tall })}(\mathrm{a} \oplus y)\right\}>$
$\max \left\{n \mid \operatorname{POS}(\right.$ tall $\left.\left.) y \wedge n \leq_{\operatorname{PoS}(\text { tall })} y\right\}\right)$
$=\exists d:$ standard $d \wedge$ tall $(d$, anthea $) \wedge$
$\partial(\exists d:$ standard $d \wedge \operatorname{tall}(d$, anthea $\oplus y) \wedge y$ is taller than anthea $)$
a. Assertion: Anthea is tall.
b. Presupposition: An alternative individual y is tall and taller than Anthea.
c. Implicature: People shorter than Anthea are not tall (i.e. Anthea is only marginally tall).
\triangleright We can generate different readings of the same sentence by having different scope configurations, explaining the ambiguity of (28).
(28) I can still explain Exercise two to Peter.
a. Focusing Peter $\rightsquigarrow \rightarrow$ Paul is beyond my help.
b. Focusing two $\leadsto \rightarrow$ Exercise three is too hard.
(29) [PETER $\left[\mathrm{ADD}_{y}\left[\left[\mathrm{er}_{n^{\prime}, y} \mathrm{CONT}\right] \lambda x[\mathrm{I}\right.\right.$ can explain ex. two to $\left.\left.\left.x]\right]\right]\right]$
a. presupposed additive comparison:
$\max \left\{n \mid \mathrm{I}\right.$ can explain ex. 2 to $\left.\mathrm{p} \oplus y \wedge n \leq_{\text {I can explain ex. } 2 \text { to }}(\mathrm{p} \oplus y)\right\}$
$>\max \left\{n \mid\right.$ I can explain ex. 2 to $\left.y \wedge n \leq_{\text {I can explain ex. } 2 \text { to }} y\right\}$
b. \quad Assertion: I can explain ex. 2 to Peter.
\triangleright Presupposition: I can also explain ex. 2 to an alternative individual y, and it is easier to do so than to Peter.
\triangleright Implicature: for people who are ranked even lower on the scale (i.e. harder to teach than Peter), I may not be able to explain ex. 2 to them.
(30) [TWO $\left[\mathrm{ADD}_{y}\left[\left[\mathrm{er}_{n^{\prime}, y} \mathrm{CONT}\right] \lambda x[\mathrm{I}\right.\right.$ can explain ex. x to Peter $\left.\left.\left.]\right]\right]\right]$
a. presupposed additive comparison: $\max \left\{n \mid \mathrm{I}\right.$ can explain ex. $2 \oplus y$ to $\left.\mathrm{p} \wedge n \leq \lambda_{x \text {.I } \mathrm{I} \text { an explain ex. } x \text { to } \mathrm{p}}(2 \oplus y)\right\}$ $>\max \left\{n \mid\right.$ I can explain ex. y to $\left.\mathrm{p} \wedge n \leq \lambda_{x \text {.I } \mathrm{I} \text { an explain ex. } x \text { to } \mathrm{p}} y\right\}$
b. \quad Assertion: I can explain ex. 2 to Peter.
\triangleright Presupposition: I can also an alternative exercise to Peter, which is easier to do so than exercise 2.
\triangleright Implicature: for exercises that are ranked even lower on the scale (i.e. harder to explain than exercise 2), I may not be able to Peter.

Conclusions

Cross linguistically, we have degree operators ambiguous between comparison, additivity, and continuation.

A comparative meaning that compares correlates on a structurally derived measurement dimension, combined with the subset principle in Distributed Morphology, can explain the these ambiguities and their cross-linguistic distributions.

The proposal crucially differs from the previous analysis (Thomas 2018) in how the correlates and the measurement dimension is determined, and I have shown a structural approach makes better predictions.

Thank you!

Beaver, D., \& Krahmer, E. (2001). A partial account of presupposition projection. Journal of logic, language and information, IO(2), 147-182. doi: 10.1023/A:1008371413822

Bhatt, R., \& Takahashi, S. (2007). Direct comparisons: Resurrecting the direct analysis of phrasal comparatives. In Semantics and linguistic theory (Vol. 17, pp. 19-36).
Feldscher, C. (2017). An additive ambiguity: summing events or degrees. In Proceedings of the esslli 2017 student session (p. 104-II5).

Greenberg, Y. (2010). Additivity in the domain of eventualities (or: Oliver twist's more). In Proceedings of sinn und bedeutung (Vol. 14, pp. 151-167).
Halle, M. (2000). Distributed morphology: Impoverishment and fission. AMSTERDAM STUDIES IN THE THEORY AND HISTORY OF LINGUISTIC SCIENCE SERIES 4, I25-1 50. doi: $10.1075 / \mathrm{cilt} .202 .07 \mathrm{hal}$ Halle, M., \& Marantz, A. (1993). Distributed morphology and the pieces of inflection. In The view from building 20 (pp. III-176). The MIT Press.
Heim, I. (1985). Notes on comparatives and related matters. Ms., University of Texas, Austin.

Li, A. (2021). Anaphora in comparison: comparing alternatives. (Presentation at SALT3 I)

[^0]: ${ }^{1}$ In this talk I use the partiality operator ∂ (Beaver \& Krahmer 2001) to indicate presupposition: $\partial(p)=\mathrm{I}_{\mathrm{I}}$ iff $p=\mathrm{r}$, otherwise $\partial(p)=\#$.

[^1]: ${ }^{2}$ Feldscher (2017) proposes a way to derive the additive reading from the comparative reading, but didn't discuss the continuative readings.

[^2]: ${ }^{3}$ Technically, for this we need to adjust the meaning of er to a more general one: $\partial\left(d^{\prime}=\max \left(\left\{d \mid f d y_{0} \ldots y_{n}\right\}\right)\right) \wedge \lambda f \lambda x_{0} \ldots \lambda x_{n} \cdot \max \left(\left\{d \mid f d x_{0} \ldots x_{n}\right\}\right)>d^{\prime}$

