L-Università ta' Malta

Counterfactuals (not) under discussion

Sonia Ramotowska, Paul Marty, Jacopo Romoli, and Paolo Santorio
SALT 33, Yale University

Collaborator

Overview

Overview

The focus

The focus: counterfactual sentences

(1) If ticket \#37 had been bought, it would have won.

Two approaches ${ }^{1}$

- We focus on two approaches:
${ }^{1}$ Stalnaker 1968, 1981 for selectional; von Fintel 1998, Schlenker 2004, Kriz 2015 for homogeneity

Two approaches ${ }^{1}$

- We focus on two approaches:
- Selectional approach
${ }^{1}$ Stalnaker 1968, 1981 for selectional; von Fintel 1998, Schlenker 2004, Kriz 2015 for homogeneity

Two approaches ${ }^{1}$

- We focus on two approaches:
- Selectional approach
- Homogeneity approach
${ }^{1}$ Stalnaker 1968, 1981 for selectional; von Fintel 1998, Schlenker 2004, Kriz 2015 for homogeneity

Previous study

- Previous study tested a divergent prediction

Previous study

- Previous study tested a divergent prediction
- It found support for the selectional approach

Previous study

- Previous study tested a divergent prediction
- It found support for the selectional approach
- But it did not control for relevance

Previous study

- Previous study tested a divergent prediction
- It found support for the selectional approach
- But it did not control for relevance
- The results remain compatible with both approaches

Addressing the confound

- A novel experiment

Addressing the confound

- A novel experiment
- manipulating relevance

Addressing the confound

- A novel experiment
- manipulating relevance
- enlarging the set of sentences

Addressing the confound

- A novel experiment
- manipulating relevance
- enlarging the set of sentences
- The results again support the selectional approach

Two other approaches ${ }^{2}$

- Focus is on the two approaches above
${ }^{2}$ Lewis 1973, Kratzer 2012 for Universal; Bar-Lev and Bassi 2016 for Implicature

Two other approaches ${ }^{2}$

- Focus is on the two approaches above
- We also discuss briefly two other approaches
${ }^{2}$ Lewis 1973, Kratzer 2012 for Universal; Bar-Lev and Bassi 2016 for Implicature

Two other approaches ${ }^{2}$

- Focus is on the two approaches above
- We also discuss briefly two other approaches
- Universal approach
${ }^{2}$ Lewis 1973, Kratzer 2012 for Universal; Bar-Lev and Bassi 2016 for Implicature

Two other approaches ${ }^{2}$

- Focus is on the two approaches above
- We also discuss briefly two other approaches
- Universal approach
- Implicature approach
${ }^{2}$ Lewis 1973, Kratzer 2012 for Universal; Bar-Lev and Bassi 2016 for Implicature

Two other approaches ${ }^{2}$

- Focus is on the two approaches above
- We also discuss briefly two other approaches
- Universal approach
- Implicature approach
- Neither is in line with our results
${ }^{2}$ Lewis 1973, Kratzer 2012 for Universal; Bar-Lev and Bassi 2016 for Implicature

Rest of today

- Background and the two approaches

Rest of today

- Background and the two approaches
- Previous study

Rest of today

- Background and the two approaches
- Previous study
- Potential confound

Rest of today

- Background and the two approaches
- Previous study
- Potential confound
- Experiment

Rest of today

- Background and the two approaches
- Previous study
- Potential confound
- Experiment
- Discussion and conclusion

Background

Background

The two approaches

The meaning of counterfactuals

(2) If ticket \#37 had been bought, it would have won.

The two approaches ${ }^{3}$

- Selectional approach
- Homogeneity approach

[^0]
The two approaches

- On both approaches, counterfactuals consider 'closest' antecedent-worlds

The two approaches

- On both approaches, counterfactuals consider 'closest' antecedent-worlds
- They differ along two dimensions:

The two approaches

- On both approaches, counterfactuals consider 'closest' antecedent-worlds
- They differ along two dimensions:
- The quantificational force

The two approaches

- On both approaches, counterfactuals consider 'closest' antecedent-worlds
- They differ along two dimensions:
- The quantificational force
- How they handle undefinedness

The selectional approach ${ }^{4}$

(3) If ticket \#37 had been bought, it would have won.
${ }^{4}$ Stalnaker 1968, 1981, 1984

The selectional approach ${ }^{4}$

(3) If ticket \#37 had been bought, it would have won.

- TRUE iff the closest world where \#37 is bought is a world in which it wins

[^1]
The selectional approach ${ }^{4}$

(3) If ticket \#37 had been bought, it would have won.

- true iff the closest world where \#37 is bought is a world in which it wins
- Often more than one plausible candidate closest world

[^2]
The selectional approach ${ }^{4}$

(3) If ticket \#37 had been bought, it would have won.

- true iff the closest world where \#37 is bought is a world in which it wins
- Often more than one plausible candidate closest world
- Supervaluations:
- (SUPER) TRUE if true in all such worlds

[^3]
The selectional approach ${ }^{4}$

(3) If ticket \#37 had been bought, it would have won.

- true iff the closest world where \#37 is bought is a world in which it wins
- Often more than one plausible candidate closest world
- Supervaluations:
- (SUPER) TRUE if true in all such worlds
- (SUPER)falSE if false in all of them

[^4]
The selectional approach ${ }^{4}$

(3) If ticket \#37 had been bought, it would have won.

- true iff the closest world where \#37 is bought is a world in which it wins
- Often more than one plausible candidate closest world
- Supervaluations:
- (SUPER) TRUE if true in all such worlds
- (SUPER)falSe if false in all of them
- undefined otherwise

[^5]
The homogeneity approach ${ }^{5}$

- Inspired by the analogous approach to plural definites
(4) The tickets that have been bought won.

[^6]
The homogeneity approach ${ }^{5}$

- Inspired by the analogous approach to plural definites
(4) The tickets that have been bought won.
- TRUE iff all of the tickets that were bought won

[^7]
The homogeneity approach ${ }^{5}$

- Inspired by the analogous approach to plural definites
(4) The tickets that have been bought won.
- TRUE iff all of the tickets that were bought won
- FALSE iff all of the tickets that were bought didn't win

[^8]
The homogeneity approach ${ }^{5}$

- Inspired by the analogous approach to plural definites
(4) The tickets that have been bought won.
- TRUE iff all of the tickets that were bought won
- FALSE iff all of the tickets that were bought didn't win
- UNDEFINED otherwise

[^9]
The homogeneity approach ${ }^{5}$

- Inspired by the analogous approach to plural definites
(4) The tickets that have been bought won.
- TRUE iff all of the tickets that were bought won
- FALSE iff all of the tickets that were bought didn't win
- UNDEFINED otherwise
- Homogeneity:
\rightsquigarrow either all of the tickets that were bought won; or all of them didn't win

[^10]
The homogeneity approach ${ }^{6}$

(5) If ticket \#37 had been bought, it would have won.

[^11]
The homogeneity approach ${ }^{6}$

(5) If ticket \#37 had been bought, it would have won.

- true iff in all of the closest worlds where it is bought it wins

[^12]
The homogeneity approach ${ }^{6}$

(5) If ticket $\# 37$ had been bought, it would have won.

- true iff in all of the closest worlds where it is bought it wins
- FALSE iff in all of the closest worlds where it is bought it doesn't win

[^13]
The homogeneity approach ${ }^{6}$

(5) If ticket $\# 37$ had been bought, it would have won.

- true iff in all of the closest worlds where it is bought it wins
- FALSE iff in all of the closest worlds where it is bought it doesn't win
- UNDEFINED otherwise

[^14]
The homogeneity approach ${ }^{6}$

(5) If ticket \#37 had been bought, it would have won.

- TRUE iff in all of the closest worlds where it is bought it wins
- FALSE iff in all of the closest worlds where it is bought it doesn't win
- UNDEFINED otherwise
- Homogeneity:
\rightsquigarrow either in all closest worlds where ticket \#37 is bought, it wins; or in all of such worlds, it doesn't win

[^15]
Divergent predictions

- Mixed lottery: all have a chance to win but none is guaranteed to win

Divergent predictions

- Mixed lottery: all have a chance to win but none is guaranteed to win
- Both approaches predict undefinedness in the simple positive case
(6) If ticket \#37 had been bought, it would have won.

Divergent predictions

- Mixed lottery: all have a chance to win but none is guaranteed to win
- Both approaches predict undefinedness in the simple positive case
(6) If ticket \#37 had been bought, it would have won.
- But differ in more complex cases
(7) None of these tickets would have won, if it had been bought.

Selectional approach

- Mixed lottery all have a chance to win but none is guaranteed to win
(8) If ticket \#37 had been bought, it would have won.

Selectional approach

- Mixed lottery all have a chance to win but none is guaranteed to win
(8) If ticket \#37 had been bought, it would have won. UNDEFINED

Selectional approach

- Mixed lottery all have a chance to win but none is guaranteed to win
(8) If ticket \#37 had been bought, it would have won. UNDEFINED
\rightarrow in some candidate closest world \#37 wins and in some it loses

Selectional approach

- Mixed lottery all have a chance to win but none is guaranteed to win
(8) If ticket \#37 had been bought, it would have won. UNDEFINED
\rightarrow in some candidate closest world \#37 wins and in some it loses
(9) None of the tickets would have won, if it had been bought
(SUPER)FALSE

Selectional approach

- Mixed lottery all have a chance to win but none is guaranteed to win
(8) If ticket \#37 had been bought, it would have won. UNDEFINED
\rightarrow in some candidate closest world \#37 wins and in some it loses
(9) None of the tickets would have won, if it had been bought (SUPER)FALSE
\rightarrow In all candidate closest worlds some ticket or other always win

Homogeneity approach

- Mixed lottery: all have a chance to win but none is guaranteed to win
(10) If ticket \#37 had been bought, it would have won. UNDEFINED \rightsquigarrow if bought, ticket \#37 is guaranteed to win or guaranteed to lose

[^16]
Homogeneity approach

- Mixed lottery: all have a chance to win but none is guaranteed to win
(10) If ticket \#37 had been bought, it would have won. UNDEFINED \rightsquigarrow if bought, ticket \#37 is guaranteed to win or guaranteed to lose
(11) None of the tickets would have won, if it had been bought

UNDEFINED

[^17]
Homogeneity approach

- Mixed lottery: all have a chance to win but none is guaranteed to win
(10) If ticket \#37 had been bought, it would have won. UNDEFINED \rightsquigarrow if bought, ticket \#37 is guaranteed to win or guaranteed to lose
(11) None of the tickets would have won, if it had been bought

UNDEFINED
$\rightsquigarrow a l l / s o m e$ of the tickets are guaranteed to win or guaranteed to lose, if bought ${ }^{7}$

[^18]
Summary

THEORY	positive	negative
Selectional	undefined	false
Homogeneity	undefined	undefined

Summary

THEORY	positive	negative
Selectional	undefined	false
Homogeneity	undefined	undefined

Background

The previous study

Previous study ${ }^{8}$

- Positive and negative cases in mixed lottery scenarios

[^19]
Previous study ${ }^{8}$

- Positive and negative cases in mixed lottery scenarios
(12) If ticket \#37 was bought, it would win.
(13) None of the tickets would win, if it was bought.

[^20]
Previous study ${ }^{8}$

- Positive and negative cases in mixed lottery scenarios
(12) If ticket \#37 was bought, it would win.
(13) None of the tickets would win, if it was bought.
- We used futureless vivid conditionals in this study

[^21]
Previous study ${ }^{9}$

- Control cases as baselines for falsity

Previous study ${ }^{9}$

- Control cases as baselines for falsity
(14) If ticket \#37 was bought, necessarily, it would win.
(15) None of the tickets could win, if it was bought.

[^22]
Previous study ${ }^{10}$

The tickets for the yellow raffle are now for sale. The yellow raffle works as follows. At the end of the ticket sales, there will be a random draw: half of the tickets that have been bought are going to not win anything, and the other half will win a prize.

If ticket \#37 was bought, it would win a prize.

[^23]
Previous study ${ }^{11}$

Responses to the test items

[^24]
Previous study

- Participants gave intermediate values to positive cases

Previous study

Responses to the test items

- Participants gave intermediate values to positive cases
- Their response to the negative was as low as false controls

Previous study

- Participants gave intermediate values to positive cases
- Their response to the negative was as low as false controls
- In line with the selectional approach

Previous study

- Participants gave intermediate values to positive cases
- Their response to the negative was as low as false controls
- In line with the selectional approach
- Challenging for the homogeneity approach

Background

The potential confound

Relevance

- The homogeneity approach supplemented with relevance sensitivity

Illustrating with plural definites

(16) The tickets that have been bought won.

Illustrating with plural definites

(16) The tickets that have been bought won.

TRUE iff all of the tickets that were bought won

Illustrating with plural definites

(16) The tickets that have been bought won.

TRUE iff all of the tickets that were bought won
FALSE iff none of the tickets that were bought won

Illustrating with plural definites

(16) The tickets that have been bought won.
true iff all of the tickets that were bought won FALSE iff none of the tickets that were bought won
UNDEFINED otherwise

Illustrating with plural definites

- In a mixed lottery scenario where some tickets won and some lost

Illustrating with plural definites

- In a mixed lottery scenario where some tickets won and some lost
(17) The tickets that have been bought won.

Illustrating with plural definites

- In a mixed lottery scenario where some tickets won and some lost
(17) The tickets that have been bought won.
- But what is relevant can make the undefined case indistinguishable from the true/false one

Reinterpreting undefinedness

- A pragmatic mechanism for contextual modulation based on relevance

Reinterpreting undefinedness

- A pragmatic mechanism for contextual modulation based on relevance
- Relevance modelled as the QuD or current issue in the context

Existential QuDs

- Whether any tickets that was bought won

Existential QuDs

- Whether any tickets that was bought won
$\{\{\exists\},\{\neg \exists\}\}$

Existential QuDs

- Whether any tickets that was bought won

$$
\{\{\exists\},\{\neg \exists\}\}
$$

(18) a. $\quad \forall$ and $\exists \wedge \neg \forall$
$\Rightarrow\{\exists\}$

Existential QuDs

- Whether any tickets that was bought won

$$
\{\{\exists\},\{\sim \exists\}\}
$$

(18) $\left.\begin{array}{l}\text { a. } \forall \text { and } \exists \wedge \neg \forall \\ \text { b. } \\ \\ \end{array}\right) . \exists \exists$

$$
\begin{array}{r}
\Rightarrow\{\exists\} \\
\Rightarrow\{\neg \exists\}
\end{array}
$$

Effectively true

- Whether any tickets that was bought won
(19) The tickets that have been bought won.

Effectively true

- Whether any tickets that was bought won
(19) The tickets that have been bought won. \approx true

Universal QuDs

- Whether all tickets that were bought won

Universal QuDs

- Whether all tickets that were bought won
$\{\{\forall\},\{\neg \forall\}\}$

Universal QuDs

- Whether all tickets that were bought won
(20) a. \forall
$\{\{\forall\},\{\neg \forall\}\}$

Universal QuDs

- Whether all tickets that were bought won

$$
\{\{\forall\},\{\neg \forall\}\}
$$

(20) a. \forall
b. $\neg \exists$ and $\exists \wedge \neg \forall$

$$
\begin{array}{r}
\Rightarrow\{\forall\} \\
\Rightarrow\{\neg \forall\}
\end{array}
$$

Effectively false

- Whether all tickets that were bought won
(21) The tickets that have been bought won.

Effectively false

- Whether all tickets that were bought won
(21) The tickets that have been bought won. $\quad \approx$ false

Same for counterfactuals

(22) If ticket \#37 was bought, it would win

Same for counterfactuals

(22) If ticket \#37 was bought, it would win

TRUE iff in all closest worlds were it is bought it wins

Same for counterfactuals

(22) If ticket \#37 was bought, it would win

TRUE iff in all closest worlds were it is bought it wins FALSE iff in no closest worlds were it is bought it wins

Same for counterfactuals

(22) If ticket \#37 was bought, it would win

TRUE iff in all closest worlds were it is bought it wins FALSE iff in no closest worlds were it is bought it wins UNDEFINED otherwise

Existential QuDs

- Whether it has a chance to win

Existential QuDs

- Whether it has a chance to win

$$
\{\{\Delta\},\{\neg \Delta\}\}
$$

$\begin{array}{ll}\text { (23) } \quad \text { a. } \quad \square \text { and } \diamond \wedge \neg \square \\ & \text { b. } \neg \diamond\end{array}$

$$
\begin{array}{r}
\Rightarrow\{\Delta\} \\
\Rightarrow\{\neg \Delta\}
\end{array}
$$

Effectively true

- Whether it has a chance to win
(24) If ticket \#37 was bought, it would win. \approx true

Universal QuDs

- Whether it is guaranteed to win

Universal QuDs

- Whether it is guaranteed to win

Universal QuDs

- Whether it is guaranteed to win

$$
\{\{\square\},\{\neg \square\}\}
$$

(25) a. \square
$\Rightarrow\{\square\}$
$\Rightarrow\{\neg \square\}$

Effectively false

- Whether it is guaranteed to win
(26) If ticket \#37 was bought, it would win. \quad false

The opposite for the negative case

- For each ticket, whether it is guaranteed to win
(27) None of the tickets would win, if it was bought

The opposite for the negative case

- For each ticket, whether it is guaranteed to win
(27) None of the tickets would win, if it was bought $\quad \approx$ true

The opposite for the negative case

- For each ticket, whether it is guaranteed to win
(27) None of the tickets would win, if it was bought $\quad \approx$ true
- For each ticket, whether it has a chance to win
(28) None of the tickets would win, if it was bought

The opposite for the negative case

- For each ticket, whether it is guaranteed to win
(27) None of the tickets would win, if it was bought $\quad \approx$ true
- For each ticket, whether it has a chance to win
(28) None of the tickets would win, if it was bought \quad false

Summary

QuDs	simple	negative
Existential	true	false
Universal	false	true

The confound in a gist

QUDs	simple	negative
Existential	true	false
Universal	false	true

- Participants might have accommodated existential QuDs

The confound in a gist

QuDs	simple	negative
Existential	true	false
Universal	false	true

- Participants might have accommodated existential QuDs
- Reinterpreting undefinedness to effectively true in the simple case

The confound in a gist

QuDs	simple	negative
Existential	true	false
Universal	false	true

- Participants might have accommodated existential QuDs
- Reinterpreting undefinedness to effectively true in the simple case
- Effectively false in the negative case

The confound in a gist

- The results remain compatible with a homogeneity approach when supplemented with a relevance-sensitive reinterpretation of undefinedness

Experiment

Experiment

Motivation

Addressing the confound

- We manipulated what was relevant in the context

Addressing the confound

- We manipulated what was relevant in the context
- Whether each ticket had a chance to win

Addressing the confound

- We manipulated what was relevant in the context
- Whether each ticket had a chance to win
- Whether each ticket was guaranteed to win

Other changes

- We also moved to genuine counterfactuals
(29) None of these tickets would have won if it had been bought.

Other changes

- We also moved to genuine counterfactuals
(29) None of these tickets would have won if it had been bought.
- And expanded the embedding environments to four quantifiers

Other changes

- We also moved to genuine counterfactuals
(29) None of these tickets would have won if it had been bought.
- And expanded the embedding environments to four quantifiers
- POS-STRONG

Every one of these tickets would have won if it had been bought.

Other changes

- We also moved to genuine counterfactuals
(29) None of these tickets would have won if it had been bought.
- And expanded the embedding environments to four quantifiers
- POS-STRONG

Every one of these tickets would have won if it had been bought.

- NEG-WEAK

Not every one of these tickets would have won if it had been bought.

Other changes

- We also moved to genuine counterfactuals
(29) None of these tickets would have won if it had been bought.
- And expanded the embedding environments to four quantifiers
- POS-STRONG

Every one of these tickets would have won if it had been bought.

- NEG-WEAK

Not every one of these tickets would have won if it had been bought.

- POS-WEAK

Some of these tickets would have won if they had been bought.

Other changes

- We also moved to genuine counterfactuals
(29) None of these tickets would have won if it had been bought.
- And expanded the embedding environments to four quantifiers
- POS-STRONG

Every one of these tickets would have won if it had been bought.

- NEG-WEAK

Not every one of these tickets would have won if it had been bought.

- POS-WEAK

Some of these tickets would have won if they had been bought.

- NEG-STRONG

None of these tickets would have won if it had been bought.

Predictions: The selectional approach

- Concerning the truth value of counterfactuals

Predictions: The selectional approach

- Concerning the truth value of counterfactuals
- the strong quantifiers to be false

Predictions: The selectional approach

- Concerning the truth value of counterfactuals
- the strong quantifiers to be false
- the weak quantifiers to be true

Predictions: The selectional approach

- Concerning the truth value of counterfactuals
- the strong quantifiers to be false
- the weak quantifiers to be true
- Concerning QuDs

Predictions: The selectional approach

- Concerning the truth value of counterfactuals
- the strong quantifiers to be false
- the weak quantifiers to be true
- Concerning QuDs
- no effect of QUDs on the truth value

Predictions: The selectional approach

- Concerning the truth value of counterfactuals
- the strong quantifiers to be false
- the weak quantifiers to be true
- Concerning QuDs
- no effect of QUDs on the truth value

	SELECTIONAL			
	every	some	none	not every
Universal	FALSE	TRUE	FALSE	TRUE
Existential	FALSE	TRUE	FALSE	TRUE

Predictions: The homogeneity approach

- Concerning the truth value of counterfactuals

Predictions: The homogeneity approach

- Concerning the truth value of counterfactuals
- all of them to be undefined

Predictions: The homogeneity approach

- Concerning the truth value of counterfactuals
- all of them to be undefined
- Concerning QuDs

Predictions: The homogeneity approach

- Concerning the truth value of counterfactuals
- all of them to be undefined
- Concerning QuDs
- depending on the QuD, some of the counterfactuals can be judged effectively true

	HOMOGENEITY			
	every	some	none	not every
Universal	FALSE	FALSE	TRUE	TRUE
Existential	TRUE	TRUE	FALSE	FALSE

Predictions: summary

	SELECTIONAL			
	every	some	none	not every
Universal	FALSE	TRUE	FALSE	TRUE
Existential	FALSE	TRUE	FALSE	TRUE

Predictions: summary

	SELECTIONAL			
	every	some	none	not every
Universal	FALSE	TRUE	FALSE	TRUE
Existential	FALSE	TRUE	FALSE	TRUE

	HOMOGENEITY			
	every	some	none	not every
Universal	FALSE	FALSE	TRUE	TRUE
Existential	TRUE	TRUE	FALSE	FALSE

Experiment

Design

Experiment overview

- 87 participants in the final sample

Experiment overview

- 87 participants in the final sample
- two tasks:

Experiment overview

- 87 participants in the final sample
- two tasks:
- QUD check task

Experiment overview

- 87 participants in the final sample
- two tasks:
- QUD check task
- Graded TVJ task - about counterfactual sentences

Experiment overview

- 87 participants in the final sample
- two tasks:
- QUD check task
- Graded TVJ task - about counterfactual sentences
- 2 between-subject QUD conditions ($N=43$ in existential QUD)

Experiment overview

- 87 participants in the final sample
- two tasks:
- QUD check task
- Graded TVJ task - about counterfactual sentences
- 2 between-subject QUD conditions ($N=43$ in existential QUD)
- 12 target sentences and 12 fillers

Experiment overview

- 87 participants in the final sample
- two tasks:
- QUD check task
- Graded TVJ task - about counterfactual sentences
- 2 between-subject QUD conditions ($N=43$ in existential QUD)
- 12 target sentences and 12 fillers
- counterfactuals embedded under quantifiers

Experiment overview

- 87 participants in the final sample
- two tasks:
- QUD check task
- Graded TVJ task - about counterfactual sentences
- 2 between-subject QUD conditions ($N=43$ in existential QUD)
- 12 target sentences and 12 fillers
- counterfactuals embedded under quantifiers
- $2 \times 2 \times 3$ within-subject factors

Experiment overview

- 87 participants in the final sample
- two tasks:
- QUD check task
- Graded TVJ task - about counterfactual sentences
- 2 between-subject QUD conditions ($N=43$ in existential QUD)
- 12 target sentences and 12 fillers
- counterfactuals embedded under quantifiers
- $2 \times 2 \times 3$ within-subject factors
- Polarity (negative, positive)

Experiment overview

- 87 participants in the final sample
- two tasks:
- QUD check task
- Graded TVJ task - about counterfactual sentences
- 2 between-subject QUD conditions ($N=43$ in existential QUD)
- 12 target sentences and 12 fillers
- counterfactuals embedded under quantifiers
- $2 \times 2 \times 3$ within-subject factors
- Polarity (negative, positive)
- Quantifier strength (weak, strong)

Experiment overview

- 87 participants in the final sample
- two tasks:
- QUD check task
- Graded TVJ task - about counterfactual sentences
- 2 between-subject QUD conditions ($N=43$ in existential QUD)
- 12 target sentences and 12 fillers
- counterfactuals embedded under quantifiers
- $2 \times 2 \times 3$ within-subject factors
- Polarity (negative, positive)
- Quantifier strength (weak, strong)
- Lottery scenario (all, mixed, none)

QUD manipulation

Question whether:
Question whether:
each ticket has a chance to win each ticket is guaranteed to win

Three lottery contexts

All

At the end of the ticket sales, every ticket that has been bought win a prize.

Three lottery contexts

All

At the end of the ticket sales, every ticket that has been bought win a prize.

Mixed

At the end of the sales, only some of the tickets that have been bought win a prize.

Three lottery contexts

All

At the end of the ticket sales, every ticket that has been bought win a prize.

Mixed

At the end of the sales, only some of the tickets that have been bought win a prize.

None

At the end of the ticket sales, none of the tickets that have been bought win a prize.

Target sentences

- POS-STRONG

Every one of these tickets would have won if it had been bought.

- NEG-WEAK

Not every one of these tickets would have won if it had been bought.

- POS-WEAK

Some of these tickets would have won if they had been bought.

- NEG-STRONG

None of these tickets would have won if it had been bought.

QUD check task

The orange raffle works as follows. The organizers want all participants to be content: at the end of the ticket sales, every ticket that has been bought win a prize.

Do you think that the person with John's investor profile, would invest in the orange raffle this year?

Figure 1: EX-QUD, All lottery context.

Graded TVJ task

The orange raffle works as follows. The organizers want all participants to be content: at the end of the ticket sales, every ticket that has been bought win a prize.

In one of the previous years, none of the tickets for the orange raffle were bought. John wrote the following diary entry:

Not every one of these tickets would have won if it had been bought.

Figure 2: Ex-qud, All lottery context \times Neg \times Weak.

Experiment

Results

QUD check task

Ceiling and floor effects in All and None lotteries.

QUD check task

Significantly higher 'Yes' response rate in Mixed context under Ex-qud.

QUD check task - summary

- Successful QUD manipulation.

QUD check task - summary

- Successful QUD manipulation.
- Responses incorrect with regard to QUD manipulation were excluded from further analysis
(in MIXED context responses: 'Yes' for U-QUD and 'No' for E-QUD).

Graded TVJ task

Mean rejection rate for each quantifier.

Homogeneity approach

	HOMOGENEITY			
	every	some	none	not every
Universal	FALSE	FALSE	TRUE	TRUE
Existential	TRUE	TRUE	FALSE	FALSE

No effect of QuD and $\mathrm{QuD} \times$ Polarity interaction.

Selectional approach

	SELECTIONAL			
	every	some	none	not every
Universal	FALSE	TRUE	FALSE	TRUE
Existential	FALSE	TRUE	FALSE	TRUE

Only significant effect of quantifier strength.

Discussion

Discussion

The main result

Our contribution

- We addressed the confound of the previous study

Our contribution

- We addressed the confound of the previous study
- by manipulating QuDs and expanding the embedding environments

Our contribution

- We addressed the confound of the previous study
- by manipulating QuDs and expanding the embedding environments
- we find an effect of quantifier strength

Our contribution

- We addressed the confound of the previous study
- by manipulating QuDs and expanding the embedding environments
- we find an effect of quantifier strength
- but no effect of QuD

Our contribution

- We addressed the confound of the previous study
- by manipulating QuDs and expanding the embedding environments
- we find an effect of quantifier strength
- but no effect of QuD
- or interaction of QuD and Polarity

The main result

- The results are in line with the selectional approach

The main result

- The results are in line with the selectional approach
- challenging for the homogeneity approach

The main result

- The results are in line with the selectional approach
- challenging for the homogeneity approach
- even if supplemented with QuD-sensitive reinterpretation of undefinedness

Discussion

Other approaches

Two other approaches

- What about the two other approaches?
- Universal approach
- Implicature approach

Two other approaches

- What about the two other approaches?
- Universal approach
- Implicature approach
- Neither in line with our results

Predictions: universal approach ${ }^{12}$

- Regardless of the QuD: the effect of Polarity

Predictions: universal approach ${ }^{12}$

- Regardless of the QuD: the effect of Polarity

	UNIVERSAL			
	every	some	none	not every
Universal	FALSE	FALSE	TRUE	TRUE
Existential	FALSE	FALSE	TRUE	TRUE

Predictions: universal approach

	UNIVERSAL VS. OUR RESULTS			
QUD	every	some	none	not every
EX-/ U-	FALSE	FALSE	TRUE	TRUE

Predictions: implicature approach ${ }^{13}$

- Implicatures are sensitive to relevance

[^25]
Predictions: implicature approach ${ }^{13}$

- Implicatures are sensitive to relevance
- It predicts relevance sensitivity where implicatures are involved.

[^26]
Predictions: implicature approach ${ }^{13}$

- Implicatures are sensitive to relevance
- It predicts relevance sensitivity where implicatures are involved.
- Effect of QuD only for every and some

[^27]
Predictions: implicature approach ${ }^{13}$

- Implicatures are sensitive to relevance
- It predicts relevance sensitivity where implicatures are involved.
- Effect of QuD only for every and some

	IMPLICATURE			
	every	some	none	not every
Universal	FALSE IMP	FALSE IMP	FALSE	FALSE
Existential	TRUE	TRUE	FALSE	FALSE

[^28]
Predictions: implicature approach

	IMPLICATURE VS. OUR RESULTS			
	every	some	none	not every
Universal	FALSE IMP	FALSE IMP	FALSE	FALSE
Existential	TRUE	TRUE	FALSE	FALSE

- Neither of the two alternative approach is compatible with our results

Discussion

Connection to other phenomena

Other phenomena

- Controlling for what is relevant in the context

[^29]
Other phenomena

- Controlling for what is relevant in the context
- To investigate a similar debate with other phenomena:

[^30]
Other phenomena

- Controlling for what is relevant in the context
- To investigate a similar debate with other phenomena:
- Plural definites ${ }^{14}$

[^31]
Other phenomena

- Controlling for what is relevant in the context
- To investigate a similar debate with other phenomena:
- Plural definites ${ }^{14}$
- Donkey anaphora ${ }^{15}$
- ...

[^32]
Other phenomena

- Controlling for what is relevant in the context
- To investigate a similar debate with other phenomena:
- Plural definites ${ }^{14}$
- Donkey anaphora ${ }^{15}$
- ...
- For these cases, we find the effect of QUDs

[^33]
Other phenomena

- This type of experimental investigations allows us to distinguish between these cases

Other phenomena

- This type of experimental investigations allows us to distinguish between these cases
- on the face of it, they look very similar and have been given similar analyses

Thanks!

[^0]: ${ }^{3}$ Stalnaker 1968, 1981 for selectional; von Fintel 1998, Schlenker 2004, Kriz 2015 for homogeneity

[^1]: ${ }^{4}$ Stalnaker 1968, 1981, 1984

[^2]: ${ }^{4}$ Stalnaker 1968, 1981, 1984

[^3]: ${ }^{4}$ Stalnaker 1968, 1981, 1984

[^4]: ${ }^{4}$ Stalnaker 1968, 1981, 1984

[^5]: ${ }^{4}$ Stalnaker 1968, 1981, 1984

[^6]: ${ }^{5}$ von Fintel 1997, Schlenker 2004, Kriz 2015

[^7]: ${ }^{5}$ von Fintel 1997, Schlenker 2004, Kriz 2015

[^8]: ${ }^{5}$ von Fintel 1997, Schlenker 2004, Kriz 2015

[^9]: ${ }^{5}$ von Fintel 1997, Schlenker 2004, Kriz 2015

[^10]: ${ }^{5}$ von Fintel 1997, Schlenker 2004, Kriz 2015

[^11]: ${ }^{6}$ von Fintel 1997, Schlenker 2004, Kriz 2015

[^12]: ${ }^{6}$ von Fintel 1997, Schlenker 2004, Kriz 2015

[^13]: ${ }^{6}$ von Fintel 1997, Schlenker 2004, Kriz 2015

[^14]: ${ }^{6}$ von Fintel 1997, Schlenker 2004, Kriz 2015

[^15]: ${ }^{6}$ von Fintel 1997, Schlenker 2004, Kriz 2015

[^16]: ${ }^{7}$ Regardless of the strength of homogeneity projection through negative quantifiers

[^17]: ${ }^{7}$ Regardless of the strength of homogeneity projection through negative quantifiers

[^18]: ${ }^{7}$ Regardless of the strength of homogeneity projection through negative quantifiers

[^19]: ${ }^{8}$ Marty, Romoli, and Santorio 2019

[^20]: ${ }^{8}$ Marty, Romoli, and Santorio 2019

[^21]: ${ }^{8}$ Marty, Romoli, and Santorio 2019

[^22]: ${ }^{9}$ Marty, Romoli, and Santorio 2019

[^23]: ${ }^{10}$ Marty, Romoli, and Santorio 2019

[^24]: ${ }^{11}$ Marty, Romoli, and Santorio 2019

[^25]: ${ }^{13}$ Bassi and Bar-Lev 2016

[^26]: ${ }^{13}$ Bassi and Bar-Lev 2016

[^27]: ${ }^{13}$ Bassi and Bar-Lev 2016

[^28]: ${ }^{13}$ Bassi and Bar-Lev 2016

[^29]: ${ }^{14}$ Augurzky et al 2022
 ${ }^{15}$ Chao and Breheny 2019

[^30]: ${ }^{14}$ Augurzky et al 2022
 ${ }^{15}$ Chao and Breheny 2019

[^31]: ${ }^{14}$ Augurzky et al 2022
 ${ }^{15}$ Chao and Breheny 2019

[^32]: ${ }^{14}$ Augurzky et al 2022
 ${ }^{15}$ Chao and Breheny 2019

[^33]: ${ }^{14}$ Augurzky et al 2022
 ${ }^{15}$ Chao and Breheny 2019

